- 3 Wege
 - durch die Lipidschicht

- 3 Wege
 - durch die Lipidschicht
 - kleine Teilchen

- 3 Wege
 - durch die Lipidschicht
 - kleine Teilchen
 - -Wasser, Sauerstoff, Kohlendioxid

- 3 Wege
 - durch die Lipidschicht
 - kleine Teilchen
 - -Wasser, Sauerstoff, Kohlendioxid
 - grössere Teilchen

- 3 Wege
 - durch die Lipidschicht
 - kleine Teilchen
 - -Wasser, Sauerstoff, Kohlendioxid
 - grössere Teilchen
 - -nur lipophile Teilchen

- 3 Wege
 - durch die Lipidschicht
 - kleine Teilchen
 - -Wasser, Sauerstoff, Kohlendioxid
 - grössere Teilchen
 - -nur lipophile Teilchen
 - passiv

- 3 Wege
 - durch die Lipidschicht
 - kleine Teilchen
 - -Wasser, Sauerstoff, Kohlendioxid
 - grössere Teilchen
 - -nur lipophile Teilchen
 - passiv
 - nicht selektiv

- 3 Wege
 - durch die Lipidschicht
 - kleine Teilchen
 - -Wasser, Sauerstoff, Kohlendioxid
 - grössere Teilchen
 - -nur lipophile Teilchen
 - passiv
 - nicht selektiv
 - Diffusion bzw. Osmose

- 3 Wege
 - Eiweisstunnel mit hydrophilen Wänden

- 3 Wege
 - Eiweisstunnel mit hydrophilen Wänden
 - Ionen

- 3 Wege
 - Eiweisstunnel mit hydrophilen Wänden
 - lonen
 - grössere hydrophile Moleküle

- 3 Wege
 - Eiweisstunnel mit hydrophilen Wänden
 - lonen
 - grössere hydrophile Moleküle
 - passiv

- 3 Wege
 - Eiweisstunnel mit hydrophilen Wänden
 - lonen
 - grössere hydrophile Moleküle
 - passiv
 - selektiv und regelbar

- 3 Wege
 - Eiweisstunnel mit hydrophilen Wänden
 - lonen
 - grössere hydrophile Moleküle
 - passiv
 - selektiv und regelbar
 - öffnen und schliessen durch die Änderung ihrer räumlichen Struktur

- 3 Wege
 - Eiweisstunnel mit hydrophilen Wänden
 - lonen
 - grössere hydrophile Moleküle
 - passiv
 - selektiv und regelbar
 - öffnen und schliessen durch die Änderung ihrer räumlichen Struktur
 - erleichterte Diffusion

- 3 Wege
 - Carrierproteine

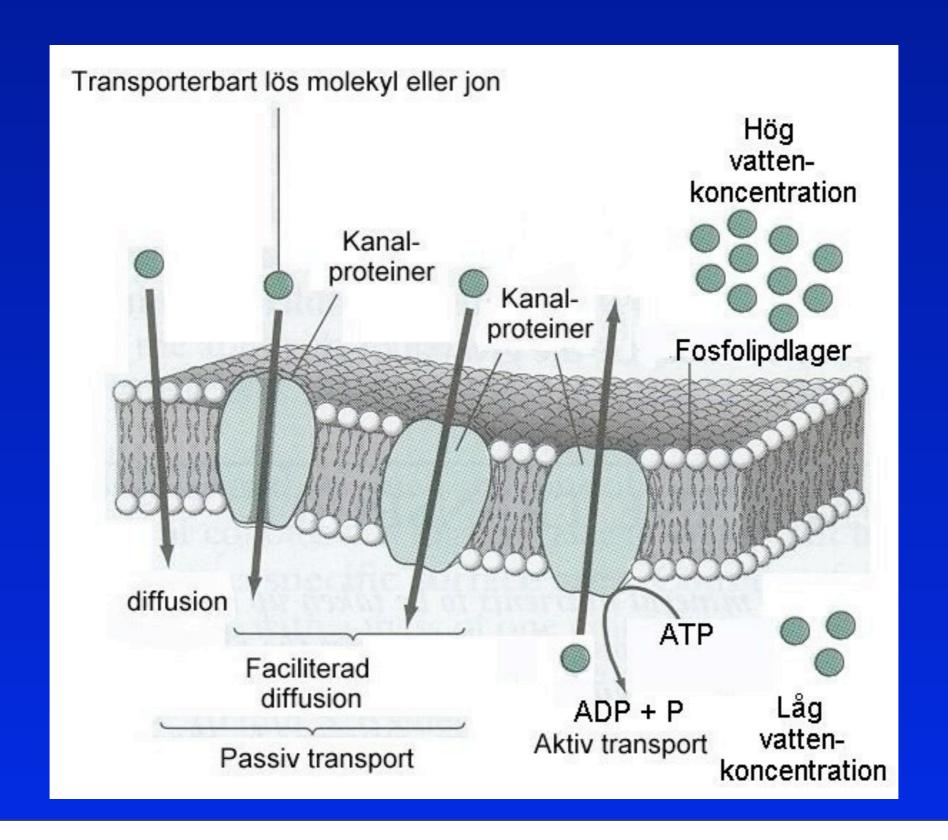
- 3 Wege
 - Carrierproteine
 - carrierspezifischer Transport von Teilchen

- 3 Wege
 - Carrierproteine
 - carrierspezifischer Transport von Teilchen
 - selektiv und regelbar

- 3 Wege
 - Carrierproteine
 - carrierspezifischer Transport von Teilchen
 - selektiv und regelbar
 - öffnen und schliessen durch die Änderung ihrer räumlichen Struktur

- 3 Wege
 - Carrierproteine
 - carrierspezifischer Transport von Teilchen
 - selektiv und regelbar
 - öffnen und schliessen durch die Änderung ihrer räumlichen Struktur
 - erleichterte Diffusion

- 3 Wege
 - Carrierproteine
 - carrierspezifischer Transport von Teilchen
 - selektiv und regelbar
 - öffnen und schliessen durch die Änderung ihrer räumlichen Struktur
 - erleichterte Diffusion
 - -mit dem Konzentrationsgefälle


- 3 Wege
 - Carrierproteine
 - carrierspezifischer Transport von Teilchen
 - selektiv und regelbar
 - öffnen und schliessen durch die Änderung ihrer räumlichen Struktur
 - erleichterte Diffusion
 - -mit dem Konzentrationsgefälle
 - -passiv

- 3 Wege
 - Carrierproteine
 - carrierspezifischer Transport von Teilchen
 - selektiv und regelbar
 - öffnen und schliessen durch die Änderung ihrer räumlichen Struktur
 - erleichterte Diffusion
 - -mit dem Konzentrationsgefälle
 - -passiv
 - aktiver Transport

- 3 Wege
 - Carrierproteine
 - carrierspezifischer Transport von Teilchen
 - selektiv und regelbar
 - öffnen und schliessen durch die Änderung ihrer räumlichen Struktur
 - erleichterte Diffusion
 - -mit dem Konzentrationsgefälle
 - -passiv
 - aktiver Transport
 - -entgegen dem Konzentrationsgefälle

- 3 Wege
 - Carrierproteine
 - carrierspezifischer Transport von Teilchen
 - selektiv und regelbar
 - öffnen und schliessen durch die Änderung ihrer räumlichen Struktur
 - erleichterte Diffusion
 - -mit dem Konzentrationsgefälle
 - -passiv
 - aktiver Transport
 - -entgegen dem Konzentrationsgefälle
 - -aktiv

- 3 Wege
 - Carrierproteine
 - carrierspezifischer Transport von Teilchen
 - selektiv und regelbar
 - öffnen und schliessen durch die Änderung ihrer räumlichen Struktur
 - erleichterte Diffusion
 - -mit dem Konzentrationsgefälle
 - -passiv
 - aktiver Transport
 - -entgegen dem Konzentrationsgefälle
 - -aktiv
 - -benötigt Energie in Form von ATP

Diffusion

- Diffusion
 - indirekte Änderung durch Konzentrationsänderungen

- Diffusion
 - indirekte Änderung durch Konzentrationsänderungen
 - Osmoregulation

- Diffusion
 - indirekte Änderung durch Konzentrationsänderungen
 - Osmoregulation
 - Zellinnendruck

- Diffusion
 - indirekte Änderung durch Konzentrationsänderungen
 - Osmoregulation
 - Zellinnendruck
 - Bewegung

- Diffusion
 - indirekte Änderung durch Konzentrationsänderungen
 - Osmoregulation
 - Zellinnendruck
 - Bewegung
 - Umwandlung Traubenzucker zu Stärke und umgekehrt

Die Regulation des Stoffwechseln

erleichterte Diffusion

Die Regulation des Stoffwechseln

- erleichterte Diffusion
 - indirekte Änderung durch Konzentrationsänderungen

Die Regulation des Stoffwechseln

- erleichterte Diffusion
 - indirekte Änderung durch Konzentrationsänderungen
 - plus Öffnen und Schliessen der Kanäle

- erleichterte Diffusion
 - indirekte Änderung durch Konzentrationsänderungen
 - plus Öffnen und Schliessen der Kanäle
 - Ladungsverteilung mittels Ionen in Nervenzellen

Carrier-Transportvorgänge

- Carrier-Transportvorgänge
 - -aktive Regelung

- Carrier-Transportvorgänge
 - -aktive Regelung
 - Steuerbar

- Carrier-Transportvorgänge
 - aktive Regelung
 - Steuerbar
 - z. B. durch chemische Botenstoffe (Hormone)

Pro Reaktion ein Enzym

- Pro Reaktion ein Enzym
- Reaktionen in bestimmten Kompartimenten

- Pro Reaktion ein Enzym
- Reaktionen in bestimmten Kompartimenten
- je mehr Enzyme der gleichen Art desto schneller laufen die Reaktionen ab

Aktivierungenergie

- Aktivierungenergie
 - aktive Stelle des Enzyms für ein Substrat

- Aktivierungenergie
 - aktive Stelle des Enzyms für ein Substrat
 - Substrat wird durch die Bindung verändert

- Aktivierungenergie
 - aktive Stelle des Enzyms für ein Substrat
 - Substrat wird durch die Bindung verändert
 - die Aktivierungsenergie wird herabgesetzt

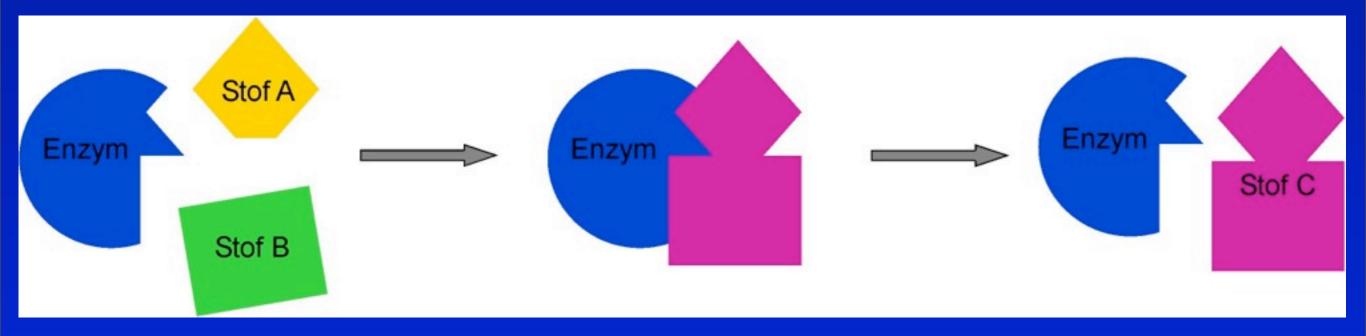
- Aktivierungenergie
 - aktive Stelle des Enzyms für ein Substrat
 - Substrat wird durch die Bindung verändert
 - die Aktivierungsenergie wird herabgesetzt
 - Dadurch wird eine bestimmte Reaktion ermöglicht

- Aktivierungenergie
 - aktive Stelle des Enzyms für ein Substrat
 - Substrat wird durch die Bindung verändert
 - die Aktivierungsenergie wird herabgesetzt
 - Dadurch wird eine bestimmte Reaktion ermöglicht
 - nach der Reaktion verlässt das Substrat das Enzym wieder

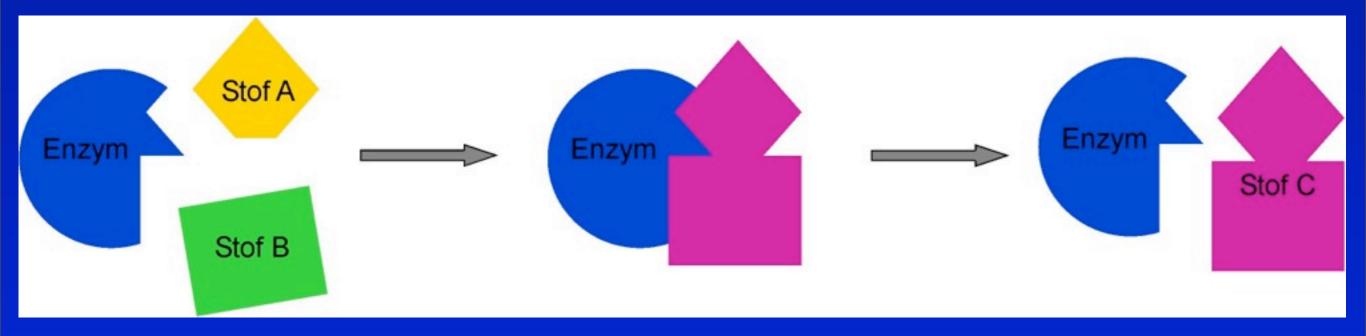
Enzyme

- Enzyme
 - Enzym werden nicht verändert

- Enzyme
 - Enzym werden nicht verändert
 - wirkungsspezifisch


- Enzyme
 - Enzym werden nicht verändert
 - wirkungsspezifisch
 - Substratspezifisch

- Enzyme
 - Enzym werden nicht verändert
 - wirkungsspezifisch
 - Substratspezifisch
 - Schlüssel Schloss Prinzip


- Enzyme
 - Enzym werden nicht verändert
 - wirkungsspezifisch
 - Substratspezifisch
 - Schlüssel Schloss Prinzip
 - Masseinheit Leistungsfähigkeit

- Enzyme
 - Enzym werden nicht verändert
 - wirkungsspezifisch
 - Substratspezifisch
 - Schlüssel Schloss Prinzip
 - Masseinheit Leistungsfähigkeit
 - Wechselzahl

- Enzyme
 - Enzym werden nicht verändert
 - wirkungsspezifisch
 - Substratspezifisch
 - Schlüssel Schloss Prinzip
 - Masseinheit Leistungsfähigkeit
 - Wechselzahl
 - 1 600'000 Reaktionen / Sekunde

Enzyme

Chemische Reaktionen

- Chemische Reaktionen
 - Reaktionsgeschwindigkeits-Temperatur-Regel

- Chemische Reaktionen
 - Reaktionsgeschwindigkeits-Temperatur-Regel
 - Faustregel

- Chemische Reaktionen
 - Reaktionsgeschwindigkeits-Temperatur-Regel
 - Faustregel
 - RGT-Regel

- Chemische Reaktionen
 - Reaktionsgeschwindigkeits-Temperatur-Regel
 - Faustregel
 - RGT-Regel
 - Zunahme Temperatur um 10 °C, Reaktion läuft 2 3 schneller ab

- Chemische Reaktionen
 - Reaktionsgeschwindigkeits-Temperatur-Regel
 - Faustregel
 - RGT-Regel
 - Zunahme Temperatur um 10 °C, Reaktion läuft 2 -3 schneller ab
 - ab ca. 50 °C verliert das Enzym seine Leistungsfähigkeit

- Chemische Reaktionen
 - Reaktionsgeschwindigkeits-Temperatur-Regel
 - Faustregel
 - RGT-Regel
 - Zunahme Temperatur um 10 °C, Reaktion läuft 2 -3 schneller ab
 - ab ca. 50 °C verliert das Enzym seine Leistungsfähigkeit
 - schliesslich wird es denaturiert

- Chemische Reaktionen
 - Reaktionsgeschwindigkeits-Temperatur-Regel
 - Faustregel
 - RGT-Regel
 - Zunahme Temperatur um 10 °C, Reaktion läuft 2 -3 schneller ab
 - ab ca. 50 °C verliert das Enzym seine Leistungsfähigkeit
 - schliesslich wird es denaturiert
 - verliert Aktivität komplett

- Chemische Reaktionen
 - Reaktionsgeschwindigkeits-Temperatur-Regel
 - Faustregel
 - RGT-Regel
 - Zunahme Temperatur um 10 °C, Reaktion läuft 2 -3 schneller ab
 - ab ca. 50 °C verliert das Enzym seine Leistungsfähigkeit
 - schliesslich wird es denaturiert
 - verliert Aktivität komplett
 - auch durch Säuren und andere Stoffe möglich

Die Regulation der Enzyme

Negative Rückkopplung des Regelkreises

Die Regulation der Enzyme

- Negative Rückkopplung des Regelkreises
 - Produkt hemmt die Herstellung weiter Enzyme

Die Regulation der Enzyme

- Negative Rückkopplung des Regelkreises
 - Produkt hemmt die Herstellung weiter Enzyme
 - Produkt hemmt die Aktivität des Enzymes

 solange gleichviel Produziert wird wie verbraucht wird gibt es immer gleich viel von einem Stoff

- solange gleichviel Produziert wird wie verbraucht wird gibt es immer gleich viel von einem Stoff
- Kern steuert die entsprechende Zu- und Abnahme den Bedingungen entsprechend

- solange gleichviel Produziert wird wie verbraucht wird gibt es immer gleich viel von einem Stoff
- Kern steuert die entsprechende Zu- und Abnahme den Bedingungen entsprechend
 - benötigte Aktivität der Zelle

- solange gleichviel Produziert wird wie verbraucht wird gibt es immer gleich viel von einem Stoff
- Kern steuert die entsprechende Zu- und Abnahme den Bedingungen entsprechend
 - benötigte Aktivität der Zelle
 - Zellzyklus